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Abstract

Performance analysis of queueing networks is one of the most challenging areas of queueing theory.

Barring very specialized models such as product-form type queueing networks, there exist very few

results which provide provable non-asymptotic upper and lower bounds on key performance measures.

In this paper we propose a new performance analysis method, which is based on the robust

optimization. The basic premise of our approach is as follows: rather than assuming that the

stochastic primitives of a queueing model satisfy certain probability laws, such as, for example,

i.i.d. interarrival and service times distributions, we assume that the underlying primitives are

deterministic and satisfy the implications of such probability laws. These implications take the form

of simple linear constraints, namely, those motivated by the Law of the Iterated Logarithm (LIL).

Using this approach we are able to obtain performance bounds on some key performance measures.

Furthermore, these performance bounds imply similar bounds in the underlying stochastic queueing

models.
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We demonstrate our approach on two types of queueing networks: a) Tandem Single Class queue-

ing network and b) Multiclass Single Server queueing network. In both cases, using the proposed

robust optimization approach, we are able to obtain explicit upper bounds on some steady-state

performance measures. For example, for the case of TSC system we obtain a bound of the form

C(1−ρ)−1 ln ln((1−ρ)−1) on the expected steady-state sojourn time, where C is an explicit constant

and ρ is the bottleneck traffic intensity. This qualitatively agrees with the correct heavy traffic scaling

of this performance measure up to the ln ln((1− ρ)−1) correction factor.

1 Introduction

Performance analysis of queueing networks is one of the most challenging areas of queueing theory. The

difficulty stems from the presence of network feedback, which introduces a complicated multidimensional

structure into the stochastic processes underlying the key performance measures. Short of specialized

cases, such as product form networks, which typically rely on Poisson arrival/exponential service time

distributional assumptions, the problem is largely unresolved. Specifically, given the topological descrip-

tion of a queueing network and given the description of the underlying stochastic primitives such as

interarrival and service times distributions, we do not have good tools for computing exactly or obtaining

upper and lower bounds on key performance measures, such as, for example average queue lengths and

waiting times. Some of results which provide non-asymptotic bounds on performance measures can be

found in [BPT94],[KK94],[KM04], [JOK97],[BGT96],[BNM99], all of which require Markovian (Poisson

arrival/exponential service time) distributional assumptions. Moreover, some of these bounds become

quite weak as traffic intensity (of some of the network components) approach unity. For example, a

bound of the form O((1− ρ∗)−2) is obtained in [BGT01], where ρ∗ is the bottleneck (real or virtual, see

the reference) traffic intensity. The other references can lead to infinite upper bounds even in the cases

where stationary distribution exists. The approaches in these papers also do not extend to the case of
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non-Markovian systems. As a consequence, most of the known performance analysis results are of an

asymptotic nature, which apply to queueing networks in various limiting regimes, such as the heavy

traffic regime [Har90],[Whi02],[CY01], large deviations methods [GOW04],[SW95], approximations by

phase-type distributions [Kle75],[LR87].

In this paper, we partially fill this gap by developing a new performance analysis approach based on

robust optimization methods. The theory of robust optimizaiton emerged recently as a very successful

and constructive approach for the analysis of certain stochastic modeling problems [Soy73],[BTN98],

[BTN99], [BS03], [BS04]. The main premise of our approach in the queueing context is that, rather

than assuming probabilistic laws for the underlying stochastic primitives, such as, for example, i.i.d.

interarrival and service times, we consider a deterministic queueing model and we will assume only the

implications of these laws. Specifically we consider implications of the Law of the Iterated Logarithm

(LIL). The objective is to find laws which on the one hand hold in the underlying stochastic queueing

model and, on the other hand, lead to linear constraints in the formulation of the robust optimization

problem, and LIL accomplishes this. We illustrate our approach using two queueing models, namely the

Tandem Single Class (TSC) queueing system operating under the First-In-First-Out (FIFO) scheduling

policy, and the Multiclass Single Server (MCSS) queueing system operating under an arbitrary work-

conserving policy. Motivated by the LIL, we consider constraints of the form
∑

1≤i≤k Ui ≤ λ−1k +

Γ
√
k ln ln k, for all k ≥ 1. Here (Uk, k ≥ 1) is any of the stochastic primitives of the underlying

queueing system, such as, for example, the sequence of interarrival times and λ stands for the rate of

this stochastic primitive. Using these bounds, we derive explicit bounds on some performance measures

such as sojourn time in the TSC system, namely, the time it takes for a job to be processed by all the

servers, and the virtual workload (virtual waiting time) in the MCSS system, namely, the time required

to clear the current backlog in the absence of future arrivals. In both models we derive upper bounds

on the aforementioned performance measures for the corresponding deterministic counterpart models
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and prove that similar bounds also hold for the same performance measures in the underlying stochastic

models. In both cases the bounds are of the order O( 1
1−ρ ln ln 1

1−ρ), where ρ is the (bottleneck for the

case of TSC model) traffic intensity. This matches the correct O( 1
1−ρ) order short of ln ln((1 − ρ)−1)

error. While the technical derivation of these bounds is involved, the conceptual approach is very

simple. An interesting distinction of our approach from other robust optimization type results is that

our results are explicit, as opposed to numeric results one typically obtains from the formulating and

solving a robust optimization model. These explicit bounds however, come at a price of not caring much

for the constants corresponding to the leading coefficient. In order to keep things simple we sometimes

use very crude estimates for such constants.

Our approach bears similarity with some earlier works in the queueing literature. Specifically, the

pioneering work of Cruz [Cru91a],[Cru91b] used a similar non-probabilistic approach to performance

analysis by deriving bounds based on placing deterministic constraints on the flow of traffic called

“burstiness constraints”. The method could be applied to fairly general network topologies and led

to more research in the area. In [GP93],[GP94], tighter performance bounds were obtained assuming

a “Leaky Bucket” rate admission control from [Tur86] and particular service disciplines. In addition,

there is some similarity between the philosophy of our approach and the adversarial queueing network

approach [BKR+01],[AAF+96],[Gam03],[Gam00],[Goe99], which emerged in the last decade in the com-

puter science literature and also replaces the stochastic assumptions with adversarial deterministic ones.

The deterministic constraints used in the aforementioned works are of the form of A(t) ≤ λt+B where

A(t) is the number of external arrivals into the queueing system up to time t and λ represents the arrival

rate. As it turns out, these types of assumptions are too restrictive from the probabilistic point of view

and do not lead to bounds on the underlying stochastic network: observe that every renewal process

A(t) arising from an i.i.d. sequence with positive variance violates this assumption almost surely for

every B for large enough t. As we demonstrate in this paper, the constraints motivated by the LIL,
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namely A(t) ≤ λt + B
√
t ln ln t, can indeed be served to obtain performance bounds, which can be

translated into the underlying stochastic network. In fact, the key contribution of our approach is that

the deterministic constraints we place on the service and arrival processes are rich enough to lead to

stochastic results. The results based on “Leaky Buckets”, bounded burstiness and adversarial queueing

theory address very general queueing networks. It would be an interesting research project to extend

our results based on robust optimization to these general network structures.

The rest of the paper is structured as follows. In the following section we describe two queueing

models under the consideration, namely the tandem single class queueing network and the single server

multiclass queueing network, as well as their robust optimization counterpart models. Our main results,

namely the performance bounds in robust optimization type queueing systems and their implications

for stochastic queueing systems are stated in Section 3. The proofs of our main results are in Sections 4

and 5. Some concluding thoughts and directions for further research are outlined in Section 6. Several

technical results necessary for proofs of main theorems are delayed untill the Appendix section.

We close this section with some notational conventions. ln stands for the logarithm with natural

base. The notation (x)
1
2 for a non-negative vector x ∈ Rd means applying the square root operator

coordinate-wise: (x)
1
2 = (x

1
2
i , 1 ≤ i ≤ d). AT denotes a transposition operator applied to the matrix A.

2 Model description

We now describe the two queueing models analyzed in this paper, both very well studied models in the

literature. We begin by describing these models in the stochastic setting, and then we describe their

deterministic robust optimization counterparts.
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2.1 A tandem single class (TSC) queueing network. Stochastic model

The model is a tandem of single servers S1, . . . , SJ processing a single stream of jobs arriving from

outside and requiring services at S1, . . . , SJ in this order. The jobs arrive from outside according to an

i.i.d. renewal process. Let U1, U2, U3, . . . denote i.i.d. interarrival times with a common distribution

function Fa(t) = P(U1 ≤ t), where U1 is the time at which the first job arrives. The external arrival

rate is defined to be λ , 1/E[U1] and the variance of U1 is denoted by σ2
a.

The jobs arriving externally join the buffer corresponding to server S1 where they are served using

First-In-First-Out (FIFO) scheduling policy. We assume that all buffers are of infinite capacity. After

service completion, jobs are routed to the buffer of server S2, where they are also served using FIFO

scheduling policy, then they are routed to servers S3, S4, etc. After service completion in server SJ the

jobs depart from the network. Let V j
k denote the service time requirement for job k in server j. We

assume that the sequence (V j
k , k ≥ 1) is i.i.d. for each j, and is independent from all other random

variables in the network. The distribution of the service time in server j is Fs,j(t) = P(V j
1 ≤ t), t ≥ 0.

The service rate in server Sj is defined to be µj , 1/E[V j
1 ], and we denote by µmin = min1≤j≤J µj

the rate of the slowest server. σ2
s,j denotes the variance of V j

1 for each j = 1, . . . , J . The traffic

intensity in server Sj is defined to be ρj = λ/µj , and the bottleneck traffic intensity is defined to be

ρ∗ = maxj ρj = λ/µmin.

Denote by W j
k the waiting time experienced by job k in server j not including the service time V j

k .

Let Wk =
∑

j(W
j
k + V j

k ) be the sojourn time of the job k. Namely, this is time between the arrival

of job k into buffer 1 and service completion of the same job in buffer J . Denote by Qj(t) the queue

length in server j (the number of jobs in buffer j) at time t. We assume that initially all queues are

empty: Qj(0) = 0, 1 ≤ j ≤ J , although most of our results can either be easily adopted to the case

of non-zero queues at time zero, or apply to the steady-state measures where the initializations of the
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queues is irrelevant. Let Ijk denote the idle time of server j in between servicing jobs k − 1 and k for

k = 2, ..., N . We define Ij1 = 0 ∀j = 1, . . . , J .

The model just described will be denoted by TSC(St) (Tandem Single Class Stochastic) for short.

It is known [Sig90],[Dai95],[DM95],[CY01] that as long as ρ∗ < 1, and some additional mild conditions

hold, such as finiteness of moments, TSC(St) is stable and the stochastic processes underlying the

performance measures such as queue lengths, workloads, sojourn times are mixing. Namely, these

processes are positive Harris recurrent [Dai95],[MT93], and the transient performance measures converge

to the (unique) steady-state performance measures both in distributions and in moments. Computing

these performance measures is a different matter, however. We denote by W j
∞,W∞ the steady state

versions of the random variables W j
k ,Wk. Thus provided that ρ∗ < 1 and some additional technical

assumptions hold, we have

lim
n→∞

E[Wn] = E[W∞]. (1)

We will assume that ρ∗ < 1 holds without explicitly stating it. Rather than describing the assumptions

required to make (1) true, we will simply assume when stating our results that (1) holds as well.

2.2 A multiclass single server (MCSS) queueing system. Stochastic model

We now describe our second queueing model. Consider a single server queueing system which processes

J classes of jobs. The jobs of class j = 1, 2, . . . , J arrive from outside according to a renewal process

with i.i.d. interarrival times U jk , k ≥ 1 and distribution function Fa,j(t) = P(U j1 ≤ t). The arrival

rate for class j jobs is λj , 1/E[U j1 ]. It is possible that some classes j do not have an external arrival

process, in which case U jk =∞ almost surely and λj = 0. Let σ2
a,j be the variance of U j1 . The sequences

(U jk , k ≥ 1) are also assumed to be independent for different j. Let λ = (λj) denote the J-vector of

arrival rates. We let λmax = max1≤j≤J λj and λmin = min1≤j≤J λj . We let A(t) = (Aj(t)) denote the

vector of cumulative number of external arrivals up to time t where Aj(t) = max{k :
∑

1≤i≤k U
j
i ≤ t}.
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The jobs corresponding to class j are stored in buffer Bj until served. As in the single class case,

we assume all buffers are of infinite capacity. The service time for the k-th job arriving to buffer Bj

is denoted by V j
k and the sequence (V j

k , k ≥ 1) is assumed to be i.i.d. with a common distribution

function Fs,j(t) = P(V j
1 ≤ t). Additionally, these sequences are assumed to be independent for all j

and independent from the interarrival times sequences (U jk , k ≥ 1). The average service time for class

j is mj , E[V j
1 ] and the service rate is µj , 1/E[V j

1 ]. σ2
s,j denotes the variance of V j

1 . Let m̄ = (mj)

denote the J-vector of average service times and let µ = (µj) be the J-vector of service rates. Let M

denote the diagonal matrix with j-th entry equal to µj and let µmax = max1≤j≤J µj .

We assume that the jobs in buffer Bj are served using FIFO rule, but prioritizing jobs between

different buffers Bj is done using some scheduling policy θ. The only assumption we make about θ is

that it is a work-conserving policy. Namely, the server is working full time as long as there is at least one

job in one of the buffers Bj , 1 ≤ j ≤ J . The only performance measure we will consider is the workload

(defined below) for which it is well known that the details of the scheduling policy are unimportant for

us, as long as the policy is work-conserving.

The routing of jobs after service completions is determined using a routing matrix P , which is an J

by J 0, 1 matrix P = (Pi,j , 1 ≤ i, j ≤ J). It is assumed that
∑

j Pi,j ≤ 1 for each i. (Namely, the sum is

either 1 or 0). Upon service completion in buffer Bi, the job of class i is routed to buffer j if Pi,j = 1.

Otherwise, if
∑

j Pi,j = 0, the jobs of class i leave the network. It is assumed that Pn = 0 for some

positive integer n. It is easy to see that this condition is equivalent to saying that all jobs eventually

leave the network.

It is known [CY01] that the traffic equation λ̄i = λi +
∑

1≤j≤J λ̄jPj,i has a unique solution λ̄ = (λ̄j)

given simply as λ̄ = [I −P T ]−1λ, where I is the J by J identity matrix. Let λ̄max = maxj(λ̄j) (observe

that λj ≤ λ̄j for every j and hence λ̄max ≥ λmax). Let Ā(t) = (Āj(t)) denote the vector of number of

arrivals by time t that will eventually route to server j: Āj(t) = eTj (I + (P T )1 + (P T )2 + . . .)A(t) =
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eTj [I − P T ]−1A(t) and ej denotes the j − th unit vector.

The traffic intensity vector is defined to be ρ̄ = M−1λ̄ = M−1[I − P T ]−1λ. The traffic intensity of

the entire server is ρ = eT ρ̄, where e is the J vector of ones. Let Qj(t) denote the queue length in buffer

j at time t, let Q(t) = (Qj(t)). We assume that Q(0) = 1. As for the case of TSC model, our results can

be extended to the case Q(0) ≥ 0, but for the results regarding steady-state behavior, the initialization

of queues is irrelevant. Denote by W j
k the waiting time of the k-th job arriving into buffer j. We let

Wt denote the workload at time t. Namely, Wt is the time required to process all the jobs present in

the system at time t, in the absence of the future arrivals. Note that Wt is also the virtual waiting time

at time t when the scheduling policy is FIFO. Observe that if t0 marks the beginning of a busy period

and t1 belongs to the same busy period (namely, the server was working continuously during the time

interval [t0, t1]), then almost surely

Wt1 =

Ā1(t1)∑
i=Ā1(t0)

V 1
i + . . .+

ĀJ (t1)∑
i=ĀJ (t0)

V J
i − (t1 − t0). (2)

The model described above is denoted by MCSS(St) (Multiclass Single Server Stochastic) for short. It is

known [Dai95] that if ρ < 1, and some additional technical assumption on interarrival and service time

distributions hold then MCSS(St) is stable and enters the steady state in the same sense as described

for the tandem queueing network. While in this case the steady-state distribution of many performance

measures usually depends on the details of work-conserving policy used, the steady-state distribution of

the workload does not depend on the policy, as we have discussed above. Let W∞ denote the workload

in steady state, and let B∞ and I∞ denote the steady-state duration of the busy and idle periods,

respectively. Additionally, denote by I0, B1, I1, B2, I2, . . . the alternating sequence of the lengths of the

busy and idle periods of the MCSS(St) system, assuming that time zero initiates a busy period. Under
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the same technical assumptions as above the following ergodic properties hold almost surely:

lim
t→∞

∫ t
0 Wsds

t
= E[W∞], (3)

lim
n→∞

∑
1≤i≤nBi

n
= E[B∞], (4)

lim
n→∞

∑
1≤i≤n Ii

n
= E[I∞], (5)

lim
n→∞

∑
1≤i≤nB

2
i

n
= E[B2

∞]. (6)

We denote by n(t) the number of busy periods that have been initiated up to time t. Mathematically,

we define n(t) to satisfy
∑

1≤i≤n(t)−1(Bi + Ii) < t ≤
∑

1≤i≤n(t)(Bi + Ii). When t ∈ [
∑

1≤i≤n(t)−1(Bi +

Ii),
∑

1≤i≤n(t)−1(Bi + Ii) + Bn(t)], t falls on a busy period and using the definition of n(t), we have

W (t) ≤ Bn(t). When t ∈ [
∑

1≤i≤n(t)−1(Bi + Ii) + Bn(t),
∑

1≤i≤n(t)(Bi + Ii)], t falls on idle period In(t)

and hence W (t) = 0. We let τi denote the beginning of the i-th busy period. This implies∫ t
0 W (s)ds

t
=

∑n(t)
i=1

∫ min(τi+Bi,t)
τi

W (s)ds

t
≤

∑
1≤i≤n(t)B

2
i∑

1≤i≤n(t)−1(Bi + Ii)

If (3),(4),(5) and (6) hold, then we also obtain

E[W∞] ≤ E[B2
∞]

E[B∞] + E[I∞]
≤ E[B2

∞]

E[B∞]
. (7)

This bound will turn useful when we apply our results for robust optimization models to the underlying

stochastic model. As for the TSC case, we assume from now on ρ < 1. Rather than listing the

assumptions leading to ergodic properties (3),(4),(5) and (6) we assume when stating our results, that

the stochastic process Wt enters the steady-state as t→∞ and that the properties (3),(4),(5) and (6)

holds almost surely.

2.3 Robust optimization type queueing systems

We now describe deterministic robust optimization type counterparts of the two stochastic queueing

models described in the previous subsections.
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We begin with TSC model and describe the corresponding model which we denote by TSC(RO)

(Tandem Single Class Robust Optimization). The description of the network topology is the same as

for TSC(St). However, it is not assumed that Uk, V
j
k and, as a result Q(t),W j

k ,Wk are random variables.

Rather we assume that these quantities are arbitrary subject to certain linear constraints detailed below.

Additionally, we assume that the system starts empty Q(0) = 0 and only n jobs go through the system.

Specifically, consider a sequence of non-negative deterministic interarrival and service times (Uk, 1 ≤

k ≤ n), (V j
k , 1 ≤ k ≤ n), 1 ≤ j ≤ J . Let

φ(x) =


√
x ln lnx, x ≥ ee;

1, x < ee.

(8)

We assume that there exist λ,Γa and µj ,Γs,j ≥ 0, 1 ≤ j ≤ J such that

∣∣ ∑
k+1≤i≤n

Uk − λ−1(n− k)
∣∣ ≤ Γaφ(n− k), k = 0, 1, . . . , n− 1, (9)

∣∣ ∑
k+1≤i≤n

V j
i − µ

−1
j (n− k)

∣∣ ≤ Γs,jφ(n− k), k = 0, 1, . . . , n− 1, j = 1, 2, . . . , J. (10)

It is because we need to consider tail summation
∑

k+1≤i≤n we assume that only n jobs going through

the system, though we will be able to apply our results in the stochastic setting where infinite number of

jobs pass through the system. Let Γ = max(Γa,Γs,j). Borrowing from the robust optimization literature

terminology ([BS04]), the parameters Γa,Γs,j ,Γ are called budgets of uncertainty. Note, that the values

Uk, V
j
k , k ≥ 1 uniquely define the corresponding performance measures Qj(t),W

j
k ,Wk, k = 1, . . . , n.

There is no notion of steady state quantities Qj(∞),W∞ for the model TSC(RO). The motivation for

constraints (9) and (10) comes from the Law of the Iterated Logarithm, and we discuss the connection

in a separate subsection.

We denote the robust optimization counterpart of the MCSS(St) model by MCSS(RO). In this case

it turns out to be convenient to consider infinite sequence of jobs. Thus consider infinite sequences

of deterministic non-negative values (U jk , k ≥ 1), (V j
k , k ≥ 1), 1 ≤ j ≤ J . It is assumed that values
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λj , µj ,Γa,j ,Γs,j ≥ 0, 1 ≤ j ≤ J exist such that

∣∣ ∑
1≤i≤k

U jk − λ
−1
j k

∣∣ ≤ Γa,jφ(k), k = 1, 2, . . . , j = 1, 2, . . . , J, (11)

∣∣ ∑
1≤i≤k

V j
i − µ

−1
j k

∣∣ ≤ Γs,jφ(k), k = 1, 2, . . . , j = 1, 2, . . . , J. (12)

For convenience we assume that at time zero the system begins with exactly one job in every class

j = 1, . . . , J : Qj(0) = 1. Then the first after time zero external arrival into buffer j occurs at time U j1 .

As before, we let Γ = max(Γa,j ,Γs,j).

For technical reasons, we also assume that Γ in TSC(RO), MCSS(RO) constraints satisfies

λΓ ≥ e2e and min
j
λjΓ ≥ e2e, respectively. (13)

2.4 The Law of the Iterated Logarithm

One of the cornerstones of the probability theory is the Law of the Iterated Logarithm (LIL) [Chu01],

which states that given a i.i.d. sequence of random variables X1, . . . , Xn, . . . with zero mean and finite

variance σ, the following holds almost surely,

lim sup
n→∞

∑
1≤k≤nXk

σ
√

2n ln lnn
= 1, lim inf

n→∞

∑
1≤k≤nXk

σ
√

2n ln lnn
= −1.

The LIL extends immediately to non-zero mean i.i.d. sequences by subtracting nE[X1] from
∑

1≤k≤nXk.

Furthermore, LIL implies (in the case of zero-mean variables) that

ΓLIL , sup
n≥1

|
∑

1≤k≤nXk|
σ
√

2φ(n)
<∞, (14)

where φ is defined in (8). Note that ΓLIL is a random variable. Thus when we consider stochastic

queueing models such as TSC(St) or MCSS(St), the constraints (9),(10),(11),(12) hold with probabil-

ity one, with Γ =
√

2ΓLILσ, where ΓLIL is defined in (14) for the corresponding random sequence.

Specifically, let Γa = Γa,LIL = ΓLIL and σ = σa, when Xk = Un−k − λ−1, 0 ≤ k ≤ n − 1 and Uk
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is the sequence of interarrival times in the TSC(St) model. Similarly define Γs,j = Γs,j,LIL when

Xk = V j
n−k − µ

−1
j , 0 ≤ k ≤ n − 1, 1 ≤ j ≤ J . Observe, that for Γa,Γs,j thus defined, the constraints

(9),(10) hold for an infinite sequences of jobs (that is jobs which would have indices −1,−2, . . .), even

though we need it only for the first n jobs. For the MCSS(St) model define Γa,j = Γa,j,LIL,Γs,j = Γs,j,LIL

corresponding to the sequences U jk − λ
−1
j , V j

k − λ
−1
j , k ≥ 1, respectively. We obtain

Proposition 1. Constraints (9),(10),(11),(12) hold with probability one for Γa =
√

2Γa,LILσa, Γs,j =

√
2Γs,j,LILσs,j , Γa,j =

√
2Γa,j,LILσa,j , and Γs,j =

√
2Γs,j,LILσs,j, respectively, where Γ·,·,LIL is defined in

(14) for the corresponding sequence.

As a conclusion, for every property derivable on the basis of these constraints in our deterministic

robust optimization queueing network models, such as, for example, bounds on the sojourn time of the

n-th job in TSC, the same property applies with probability one for the underlying stochastic network.

This observation underlies the main idea of the paper.

3 Main results

In this section we state our main results on the performance bounds for robust optimization type

queueing networks TSC(RO) and MCSS(RO), and the implications of our results for their stochastic

counterparts TSC(St) and MCSS(St). We begin with TSC(RO) with the goal of obtaining a bound on

the sojourn time.

Theorem 1. The sojourn time of the n-th job in the TSC(RO) queueing system with constraints (9),(10)

satisfies

Wn ≤
7J2Γ2λ

1− ρ∗
ln ln

JλΓ

1− ρ∗
+ Jλ−1. (15)

Observe that the bound on the sojourn time is explicit. It is expressed directly in terms of the

primitives of the queueing system such as arrival and service rates. Observe also that the upper bound
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is independent from n. One can think of this bound as a “steady-state” bound on the sojourn time in the

robust optimization model of the TSC system. Additionally, the constant Γ2 is related to the “variances”

of interarrival and service times viz a vi the LIL (14). It is known that in the stochastic GI/GI/1 queueing

system the expected waiting time in steady state is approximately (σ2
a+σ2

s)/(2λ(1−ρ)), when the system

is in heavy traffic, namely ρ→ 1. Namely, the expected waiting time depends linearly on the variances

of interarrival and service time. Our bound (15) is thus consistent with this type of dependence. On

the other hand, unfortunately, our bound depends quadratically on the number of servers J , whereas

the correct dependence is known to be linear, at least in some special cases [Rei84],[GZ06].

The bound above does not have a correct O((1− ρ∗)−1) scaling, which is known to be correct from

the heavy-traffic theory perspective [Rei84],[GZ06]. However, the correction factor is a very slowly

growing function ln ln. The upshot is that we can use this bound to obtain a bound on Wn and W∞ in

the underlying stochastic system. This is what we do next.

Corollary 1. For every n ≥ 1 the sojourn time of the n-th job in the TSC(St) queueing network satisfies

E[Wn] ≤ E
[7J2Γ2λ

1− ρ∗
ln ln

JλΓ

1− ρ∗
]

+ Jλ−1. (16)

where Γ = maxj(
√

2σaΓa,LIL,
√

2σs,jΓs,j,LIL, e
2eλ−1). If in addition the assumption (1) holds then

E[W∞] ≤ E
[7J2Γ2λ

1− ρ∗
ln ln

JλΓ

1− ρ∗
]

+ Jλ−1. (17)

Proof. We first assume Theorem 1 is established. Note, in the context of the stochastic system, both

Wn and Γ in Theorem 1 are random variables. We take Γ = maxj(
√

2σaΓa,LIL,
√

2σs,jΓs,j,LIL, e
2eλ−1)

to satisfy (13), where Γ·,·,LIL is defined in (14) for the corresponding sequence. Applying Proposition 1

we have that (15) holds with probability one for the underlying stochastic network. The bound (16)

now follows from taking expectations of both sides of (15). The bound (17) follows from applying (1)

to (16).
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We now turn our attention to the MCSS queueing model. Our approach for deriving a bound on the

workload is based on first obtaining an upper bound on the duration of the busy period. Thus, we first

give a bound on the duration of the busy period and then turn to the workload. Recall our assumption

Q(0) = 1, though our results can readily be extended to the general case of Q(0) ≥ 0. Thus, time t = 0

marks the beginning of a busy period.

Theorem 2. Given a MCSS(RO) queueing system with constraints (11),(12), let B be the duration of

the busy period initiated at time 0. Then

B ≤ 5(4J + 3)2λ̄3
maxΓ4

(1− ρ)2
ln ln

2(4J + 3)λ̄2
maxΓ2

1− ρ
, (18)

and sup
0≤t≤B

W (t) ≤ 2(4J + 3)2λ̄3
maxΓ4

1− ρ
ln ln

(4J + 3)λ̄2
maxΓ2

1− ρ
+ Γ + 3λ̄2

maxΓ3. (19)

While the bound (19) corresponds to the maximum workload during a given busy period, the actual

value of the bound does not depend on the busy period length explicitly. As it will become apparent

from the proof, we use the same technique for obtaining a bound simultaneously on the duration of the

busy period and maximum workload during the busy period. Let us now discuss the implications of

these bounds for the underlying stochastic model MCSS(St).

Corollary 2. Given a MCSS(St) model, suppose the relations (3),(4),(5) and (6) hold. Then

E[B∞] ≤ E
[5(4J + 3)2λ̄3

maxΓ4

(1− ρ)2
ln ln

2(4J + 3)λ̄2
maxΓ2

1− ρ

]
, (20)

E[W∞] ≤ E
[25(4J + 3)4λ̄6

maxµmaxΓ8

(1− ρ)4

(
ln ln

2(4J + 3)λ̄2
maxΓ2

1− ρ

)2]
, (21)

where Γ = maxj(
√

2σa,jΓa,j,LIL,
√

2σs,jΓs,j,LIL, e
2eλ−1

min).

Unfortunately, in this case the scaling of our bounds as ρ → 1 deviates significantly from the

correct behavior. From the heavy traffic theory [DK95], the correct behavior for the steady-state

workload should be O((1− ρ)−1). As for the steady-state busy period, the theory of M/G/1 queueing
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system [Kle75] suggests the behavior O((1 − ρ)−
3
2 ) as opposed to O((1 − ρ)−2 ln ln(1 − ρ)−1) which

we obtain. On the positive side, however, we managed to obtain explicit bounds on the performance

measures which are expressed directly in terms of the stochastic primitives of the model, which we do

not believe was possible using prior methods. We leave it as an interesting open problem to derive

the performance bounds based on the robust optimization technique, which lead to the correct scaling

behavior as ρ→ 1.

While the proofs of our main results are technically involved, conceptually they are not complicated.

Before we turn to formal proofs, in order to help the reader, we outline below informally some of the

key proof steps for our results.

For the TSC queueing network we first replace the constraints (9),(10) with more general constraints,

see (22) and (23) below. Our results for the TSC network rely mostly on the Lindley’s type recursion

which in a single server queueing system recursively represents in the waiting time of the n-th job in

terms of the interarrival and service times of the first n jobs. It is classical result of the queueing

theory that this waiting time can be thought of as maximum of a random walk, with steps equalling in

distribution to the difference between the interarrival and service times. We derive a similar relation

in the form of a bound on the sojourn time of the n-th job in the TSC network. This bound is given

in Theorem 3. Then we view this bound as an optimization problem and obtain a bound on the

objective value by proving the concavity of the objective function and substituting explicit bounds from

constraints (9),(10).

Our proofs for the MCSS queueing system rely on the relation (2). Namely, we take advantage of the

fact that the workload is depleted with the unit rate during the busy period. Then we take advantage of

the constraints (11),(12) to show that in the MCSS(RO) system the workload at time t during the busy

period can be upper bounded by an expression of the form −at+b
√
t ln ln t+c with strictly positive a, b.

It is then not hard to obtain an explicit estimated t0 such that this expression is negative for t > t0.
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Since this expression is an upper bound on a non-negative quantity (workload), then the duration of

the busy period cannot be larger than t0. This leads to an upper bound on the duration of the busy

period in the MCSS(RO) system. In order to obtain a bound on the workload, we again take advantage

of (2) and further obtain explicit upper bounds on the terms involving the sums of service times. We

show that the workload at time t is at most −at + b
√
t ln ln t + c. We then obtain an upper bound on

the workload during the busy period by obtaining explicit bounds on maxt≥0−at+ b
√
t ln ln t+ c.

Our derivation of the bounds for the stochastic model MCSS(St) relies on the ergodic representation

(3). We consider a modified system in which each busy period is initiated with simultaneous arrival

of one job into every buffer j. This leads to a alternating renewal process with alternating i.i.d. busy

and idle periods. We then obtain a bound on the steady-state workload in terms of the second moment

of the busy period in the modified queueing system, using the renewal theory type arguments. It is

this necessity to look at the second moment of the busy period which leads to a conservative scaling

O
(

(1− ρ)−4(ln ln(1− ρ)−1)2
)

in our bound (21) on the steady-state workload.

4 Tandem single class queueing system analysis: proof of Theorem 1

In order to prove Theorem 1 we first generalize constraints (9),(10) and obtain a method for bounding

Wn under more general uncertainty assumptions.

4.1 General upper bound on the sojourn times

Given a sequence of non-negative real values Γjmin(k),Γjmax(k) 1 ≤ j ≤ J, 1 ≤ k ≤ n, Γmin(k),Γmax(k)

1 ≤ k ≤ n, we consider the set of all sequences of service times and interarrival times (V j
i ), (Ui)
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j = 1, . . . , J , i = 1, . . . , n satisfying for all k = 1, . . . , n

Γjmin(k) ≤
n∑
i=k

V j
i ≤ Γjmax(k), (22)

Γmin(k) ≤
n∑
i=k

Ui ≤ Γmax(k), (23)

V j
i , Ui ≥ 0.

In the next theorem we obtain a bound on the sojourn time of the n-th job in TSC(RO) system in

terms of values Γjmin(k),Γjmax(k),Γmin(k),Γmax(k).

Theorem 3. Suppose the relations (22) and (23) hold. Then

Wn ≤ max
n≥kJ≥...≥k1≥1

J−1∑
j=1

(
Γjmax(kj)− Γjmin(kj+1 + 1)

)
+ ΓJmax(kJ)− Γmin(k1 + 1) (24)

We now show how Theorem 3 implies our main result Theorem 1.

Proof of Theorem 1. The proof consists of two steps: the first step uses Theorem 3 to bound Wn with

uncertainty sets (9),(10). The second step involves solving some associated maximization problem.

We set Γmin(k) = λ−1(n+1−k)−Γaφ(n+ 1− k),Γmax(k) = λ−1(n+1−k)+Γaφ(n+ 1− k),Γjmin(k) =

µ−1
j (n+ 1− k)− Γs,jφ(n+ 1− k),Γjmax(k) = µ−1

j (n+ 1− k) + Γs,jφ(n+ 1− k), where φ is defined by

(8). From Theorem 3 we obtain:

Wn ≤ max
n≥kJ≥...≥k1≥1

J−1∑
j=1

(
µ−1
j (n+ 1− kj) + Γs,jφ(n+ 1− kj)

)
−
J−1∑
j=1

(
µ−1
j (n+ 1− kj+1 − 1)− Γs,jφ(n+ 1− kj+1 − 1)

)
+
(
µ−1
J (n+ 1− kJ) + Γs,Jφ(n+ 1− kJ)

)
−
(
λ−1(n+ 1− k1 − 1)− Γaφ(n+ 1− k1 − 1)

)
Since n ≥ kj+1 ≥ kj ∀j, we can replace µ−1

j by µ−1
min = max(µ−1

1 , µ−1
2 . . . , µ−1

J ) < λ−1 and preserve
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inequality. Similarly, we can replace Γs,1,Γs,2, . . . ,Γs,J ,Γa by Γ. We obtain:

Wn ≤ max
n≥kJ≥...≥k1≥1

J−1∑
j=1

[
µ−1

min

(
kj+1 + 1− kj

)
+ Γ

(
φ(n+ 1− kj) + φ(n− kj+1)

)]
+
(
µ−1

min(n+ 1− kJ) + Γφ(n+ 1− kJ)
)
−
(
λ−1(n− k1)− Γφ(n− k1)

)
≤ max

n≥k1≥1
µ−1

min(n− k1) + 2JΓφ(n+ 1− k1)

+ Jµ−1
min − λ

−1(n− k1) where we used k1 ≤ k2 ≤ . . . ≤ kJ to combine Γ terms

= max
n≥k1≥1

(n+ 1− k1)(µ−1
min − λ

−1) + 2JΓφ(n+ 1− k1) + (J − 1)µ−1
min + λ−1

≤ max
n≥k1≥1

(n+ 1− k1)(µ−1
min − λ

−1) + 2JΓφ(n+ 1− k1) + Jλ−1 since λ−1 > µ−1
min

We let x = n+ 1− k1. Since 1 ≤ k1 ≤ n we have that 1 ≤ x ≤ n and obtain:

Wn ≤ max
n≥x≥1

x(µ−1
min − λ

−1) + 2JΓφ(x) + Jλ−1

≤ max
x≥1

x(µ−1
min − λ

−1) + 2JΓφ(x) + Jλ−1 (25)

Putting a = λ−1−µ−1
min, b = JΓ, c = Jλ−1, and using the assumption (13), we have b/a = λJΓ/(1−ρ∗) ≥

e2e, namely, the condition (34) is satisfied. Applying Proposition 2 from Appendix we obtain

Wn ≤
7λJ2Γ2

1− ρ∗
ln ln

λJΓ

1− ρ∗
+ Jλ−1.

This completes the proof of the theorem.

4.2 Proof of Theorem 3

Job 1 enters the system first, followed by jobs 2, 3, . . . , n. Let U ji be the time between the arrival of

job i and job i− 1 into server j for i = 2, . . . , n and j = 1, . . . , J . Specifically, U1
i = Ui, and we define
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U j1 = V j−1
1 for j = 2, . . . , J . The following relations are well known in the queueing theory [Kle75].

W j
i = max(W j

i−1 + V j
i−1 − U

j
i , 0) ∀ i = 2, . . . , n, j = 1, . . . , J , (26)

U ji = V j−1
i + Ij−1

i ∀ i = 2, . . . , n, j = 2, . . . , J , (27)

W j
i = max

{
max

1≤k≤i−1

i−1∑
l=k

(
V j
l − U

j
l+1

)
, 0
}

∀ i = 2, . . . , n, j = 1, . . . , J , (28)

W j
i−1 = W j

i − I
j
i − (V j

i−1 − U
j
i ) ∀ i = 2, . . . , n, j = 1, . . . , J . (29)

We now prove some more detailed results regarding the dynamics of our queueing system.

Corollary 3. The following relations hold for k = 2, . . . , n− 1:

n∑
i=k+1

U2
i =

n∑
i=k+1

(V 1
i + I1

i ) = W 1
n −W 1

k +
n∑

i=k+1

U1
i + V 1

n − V 1
k .

Proof. The first equality follows from (27). To prove the second equality we use (29) to obtain

n∑
i=k+1

(V 1
i + I1

i ) =
n∑

i=k+1

(W 1
i −W 1

i−1 + U1
i ) + V 1

n − V 1
k ,

and the result follows.

Lemma 1.

Wn = max
n≥kJ≥...≥k1≥1

k2∑
i=k1

V 1
i +

k3∑
i=k2

V 2
i + . . .+

kJ∑
i=kJ−1

V J−1
i +

n∑
i=kJ

V J
i −

n∑
i=k1+1

U1
i . (30)

Proof. We prove Lemma 1 by induction. We let W j,S
i = W j

i + V j
i denote the sojourn time of customer

i in server j.

Case J = 1: We first define
∑j

i=j+1 ≡ 0 for all j. Using (28) and V j
i ≥ 0 we have for any n = 2, . . . , n:

W 1,S
n = max

(
max

n−1≥k1≥1

n−1∑
i=k

(
V 1
i − U1

i+1

)
, 0
)

+ V 1
n

= max
(

max
n≥k1≥1

n∑
i=k1

V 1
i −

n∑
i=k1+1

U1
i , V

1
n

)
= max

n≥k1≥1

( n∑
i=k1

V 1
i −

n∑
i=k1+1

U1
i

)
and this completes case J = 1.
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Case J > 1: Note that Wn = W 1,S
n + (W 2,S

n + . . . + W J,S
n ) and denotes the sojourn time of job n in

J-server system. We suppose that the result holds for a J−1 tandem system and proceed by induction:

max
n≥kJ≥...≥k1≥1

k2∑
i=k1

V 1
i +

k3∑
i=k2

V 2
i + . . .+

kJ∑
i=kJ−1

V J−1
i +

n∑
i=kJ

V J
i −

n∑
i=k1+1

U1
i

= max
n≥kJ≥...≥k1≥1

( k2∑
i=k1

V 1
i −

k2∑
i=k1+1

U1
i

)
−

n∑
i=k2+1

U1
i +

k3∑
i=k2

V 2
i + . . .+

kJ∑
i=kJ−1

V J−1
i +

n∑
i=kJ

V J
i

= max
n≥kJ≥...≥k2≥1

[
max

k1:k2≥k1≥1

( k2∑
i=k1

V 1
i −

k2∑
i=k1+1

U1
i

)
−

n∑
i=k2+1

U1
i +

k3∑
i=k2

V 2
i + . . .+

kJ∑
i=kJ−1

V J−1
i +

n∑
i=kJ

V J
i

]

= max
n≥kJ≥...≥k2≥1

W 1,S
k2
−

n∑
i=k2+1

U1
i +

k3∑
i=k2

V 2
i + . . .+

kJ∑
i=kJ−1

V J−1
i +

n∑
i=kJ

V J
i the base case J = 1 is used

= max
n≥kJ≥...≥k2≥1

(
W 1,S
k2
−

n∑
i=k2+1

U1
i

)
+

k3∑
i=k2

V 2
i + . . .+

kJ∑
i=kJ−1

V J−1
i +

n∑
i=kJ

V J
i

= max
n≥k2≥...≥kJ≥1

(
W 1,S
n −

n∑
i=k2+1

U2
i

)
+

k3∑
i=k2

V 2
i + . . .+

kJ∑
i=kJ−1

V J−1
i +

n∑
i=kJ

V J
i

we used Corollary 3 and W 1,S
k2

= W 1
k2 + V 1

k2

= W 1,S
n + max

n≥kJ≥...≥k2≥1

k3∑
i=k2

V 2
i + . . .+

kJ∑
i=kJ−1

V J−1
i +

n∑
i=kJ

V J
i −

n∑
i=k2+1

U2
i

= W 1,S
1 + (W 2,S

n + . . .+W J,S
n ) by inductive assumption on J − 1 server system

and the proof follows from definition of sojourn time Wn.

Proof of Theorem 3. The result follows immediately from Lemma 1.

5 Multiclass single server analysis: proofs of main results

5.1 Proof of Theorem 2

Lemma 2. For every t satisfying

t ≥ max
j

(λ−1
j ee, λ−1

j + 3λ−1
j λ2

maxΓ2), (31)

the following holds: Aj(t) ≤ tλj + 3λ2
jΓ

2φ(tλj).
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Proof. Assume first Aj(t) < ee. Then applying (11) corresponding to the case Aj(t) < ee, we obtain

Aj(t)λ
−1
j − Γa,j ≤ t, namely Aj(t) ≤ λjt+ λjΓa,j ≤ λjt+ λjΓ. Since λjΓ, φ(tλj) ≥ 1 from (13) and (8),

the desired result is obtained. For the rest of the proof assume Aj(t) ≥ ee. Applying (11), we obtain

Aj(t)λ
−1
j − Γa,j

√
Aj(t) ln lnAj(t) ≤ t. Which gives

Aj(t)− tλj√
Aj(t) ln lnAj(t)

≤ λjΓa,j ≤ λjΓ. (32)

Define bj by: bj = tλj + 3λ2
jΓ

2
√
tλj ln ln tλj . Observe that:

bj − tλj√
bj ln ln bj

=
3λ2

jΓ
2
√
tλj ln ln tλj(

(tλj + 3λ2
jΓ

2
√
tλj ln ln tλj) ln ln(tλj + 3λ2

jΓ
2
√
tλj ln ln tλj)

) 1
2

≥
3λ2

jΓ
2
√
tλj ln ln tλj(

(tλj + 3λ2
jΓ

2
√
t2λ2

j ) ln ln(tλj + 3λ2
jΓ

2
√
t2λ2

j )
) 1

2

since tλj ≥ ln ln tλj for tλj ≥ ee from (31)

=
3λ2

jΓ
2
√
tλj ln ln tλj(

(tλj)(1 + 3λ2
jΓ

2) ln ln (tλj)(1 + 3λ2
jΓ

2)
) 1

2

≥
3λ2

jΓ
2
√
tλj ln ln tλj(

(tλj)(1 + 3λ2
jΓ

2) ln ln(tλj)2
) 1

2

since tλj > 1 + 3λ2
jΓ

2 from (31)

≥
3λ2

jΓ
2
√

ln ln tλj√
(4λ2

jΓ
2)(2 ln ln tλj)

since 2 ln ln tλj > ln ln(tλj)
2 for tλj ≥ ee and λjΓ ≥ 1

≥ λjΓ by simplifying above expression.

Since
x−tλj√
x ln lnx

is an increasing function for x ≥ ee and from (32), we have that bj ≥ Aj(t) and the result

is obtained.

We now obtain an upper bound on the cumulative arrival processes Āj(t), 1 ≤ j ≤ J .

Lemma 3. For every t satisfying (31), the following holds

φ(Āj(t)) ≤
(
(2 + 6λ2

maxΓ2)
) 1

2φ(λ̄jt)

Proof. Consider first the case Āj(t) < ee. From (8), we have that φ(Āj(t)) = 1 and applying (31), the

lemma follows. Now we consider the case Āj(t) ≥ ee. Recall that Āj(t) = eTj [I − P T ]−1A(t). Applying
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Lemma 2

Āj(t) ≤ eTj [I − P T ]−1λt+ eTj [I − P T ]−1



3λ2
1Γ2φ(tλ1)

3λ2
2Γ2φ(tλ2)

...

3λ2
JΓ2φ(tλJ)


≤ eTj [I − P T ]−1λt+ 3λ2

maxΓ2eTj [I − P T ]−1λt applying (31) and x ≥ φ(x) for x ≥ ee

= λ̄jt(1 + 3λ2
maxΓ2), applying the definition of λ̄j .

Applying this bound we also obtain

ln ln Āj(t) ≤ ln ln(λ̄jt(1 + 3λ2
maxΓ2))

≤ ln ln(λ̄jt)
2 using assumption (31)

= ln ln λ̄jt+ ln 2

≤ 2 ln ln λ̄jt, using λ̄jt ≥ λjt ≥ ee from (31).

Combining the previous bounds with definition of φ(x), the lemma follows.

Lemma 4. For every t satisfying (31), we have: m̄T Ā(t)− t ≤ (ρ− 1)t+ 3λmaxΓ2φ(λmaxt).

Proof. Applying definition of Āj(t), we have

m̄T Ā(t)− t = m̄T [I − P T ]−1A(t)− t

≤ mT [I − P T ]−1
(
λt+ 3λmaxΓ2φ(λmaxt)λ

)
− t from Lemma 2

=
∑
j

mj λ̄jt+ 3λmaxΓ2φ(λmaxt)
∑
j

mj λ̄j − t applying the definition of λ̄j

= (ρ− 1)t+ 3λmaxΓ2φ(λmaxt)ρ

and the lemma follows from applying the condition ρ < 1 to the second term.
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We now obtain an upper bound in the duration of the busy period. Recall the identity (2). Since

the busy period begins at time zero its duration is upper bounded by the first time t such that

Ā1(t)∑
i=1

V 1
i + . . .+

ĀJ (t)∑
i=1

V J
i − t < 0. (33)

Consider any t satisfying the lower bound (31). We have

Ā1(t)∑
i=1

V 1
i + . . .+

ĀJ (t)∑
i=1

V J
i − t

≤
J∑
j=1

µ−1
j Āj(t) +

J∑
j=1

Γa,jφ(Āj(t))− t applying (11),(12)

≤ m̄T Ā(t)− t+

J∑
j=1

Γa,j
(
(2 + 6λ2

maxΓ2)
) 1

2φ(λ̄jt) applying Lemma 3

≤ t(ρ− 1) + 3λmaxΓ2φ(λmaxt) +
J∑
j=1

Γ(2 + 6λ2
maxΓ2)

1
2φ(λ̄jt) applying Lemma 4

≤ t(ρ− 1) + (4J + 3)λ̄maxΓ2φ(λ̄maxt),

where we have used a crude estimate 2+6λ2
maxΓ2 < 16λ2

maxΓ2, justified by (13). We now apply Lemma 6

with x = λ̄maxt, a = λ̄−1
max(1 − ρ), b = (4J + 3)λ̄maxΓ2/2 and c = 0. The condition (34) is implied by

assumption (13), and the second condition of Lemma 6 is satisfied since c = 0. We obtain that (33)

holds for all t satisfying (31) and

t ≥ 18(4J + 3)2λ̄2
maxΓ4

4λ̄maxλ̄
−2
max(1− ρ)2

ln ln
3(4J + 3)λ̄maxΓ2

2λ̄−1
max(1− ρ)

≥ 5(4J + 3)2λ̄3
maxΓ4

(1− ρ)2
ln ln

2(4J + 3)λ̄2
maxΓ2

1− ρ
.

Observe using (13) that the right-hand side of the last expression is larger than the right-hand side of

(31). Combining two cases we obtain (18).

We now turn to (19). First suppose t does not satisfy (31). Denote the right-hand side of (31) by

C. That is t < C. Observe that W (t) ≤ (C − t) + W (C) ≤ C + W (C) as the workload at time C

corresponds in addition to arrivals during [t, C]. So now we focus on the case when t satisfies (31). We
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use Proposition 2 from Appendix and obtain

sup
C≤t≤B

W (t) ≤ 7(4J + 3)2λ̄2
maxΓ4

4λ̄−1
max(1− ρ)

ln ln
(4J + 3)λ̄maxΓ2

2λ̄−1
max(1− ρ)

≤ 2(4J + 3)2λ̄3
maxΓ4

1− ρ
ln ln

(4J + 3)λ̄2
maxΓ2

1− ρ
.

From (13), we have Γ ≥ λ−1
min. We conclude that

sup
0≤t≤B

W (t) ≤ 2(4J + 3)2λ̄3
maxΓ4

1− ρ
ln ln

(4J + 3)λ̄2
maxΓ2

1− ρ
+ Γ + 3λ̄2

maxΓ3.

This completes the proof of the theorem.

5.2 Proof of Corollary 2

First we establish bound (20). Let t = 0 mark the beginning of a busy period with (random) length

B∞ in steady state. This means that there is an arrival into one of the classes j0 at time 0. Consider

a modified system where the first arrivals into classes j 6= j0, λj > 0 after time 0 are artificially pushed

down to exactly time 0. Namely, now at time zero there is an arrival into every class j with λj > 0.

The subsequent arrivals into these classes are also pushed earlier by the same amount, thus creating an

i.i.d. renewal process initiated at time 0. Let B̂ be the busy period initiated in the modified system at

time 0. It is easy to see that almost surely B̂ ≥ B∞. However, now that we have arrivals in every class

at time zero, applying Proposition 1 and our result for the robust optimization counterpart queueing

system, namely applying part (18) of Theorem 2, we obtain the required bound by taking the expected

values of both sides of (18). This establishes part (20).

In order to prove (21), we use a bound (7). Using our earlier argument for the proof of (20) but

applying it to the second moment of B̂ we obtain

E[B2
∞] ≤ E[B̂2] ≤ E

[25(4J + 3)4λ̄6
maxΓ8

(1− ρ)4

(
ln ln

2(4J + 3)λ̄2
maxΓ2

1− ρ

)2]
.

On the other hand, we trivially have have E[B∞] ≥ min1≤j≤J mj = 1/µmax, since every busy period

involves at least one service completion. The result then follows.
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6 Conclusion

Using ideas from the robust optimization theory we have developed a new method for conducting per-

formance analysis of queueing networks. The essence of our approach is replacing stochastic primitives

of the underlying queueing system with deterministic quantities which satisfy the implications of some

probability laws. These implications take the form of linear constraints and for the case of two queueing

systems, namely Tandem Single Class queueing networks and Multiclass Single Server queueing system,

we have managed to derive explicit upper bounds on some performance measures such as sojourn times

and workloads. Then we showed that the bounds implied by the Law of the Iterated Logarithm are appli-

cable for the underlying stochastic queueing system leading to explicit and non-asymptotic performance

bounds on the same performance measures. We are not aware of any other method of performance

analysis which can provide similar performance bounds in queueing model of similar generality.

We have just scratched the surface of possibilities in this paper and we certainly expect that our

approach can be strengthened and extended in multiple directions, some of which we outline below.

First we expect that our approach extends to even more general models, such as, for example multiclass

queueing networks or more general processing networks [Har00]. The performance bounds can be

obtained perhaps again by introducing linear constraints implied by probability laws and using some sort

of a Lyapunov function for obtaining bounds in the resulting robust optimization type queueing model.

Another important direction is identifying new probability laws which lead to tighter constraints than the

ones implied by the LIL. Ideally, one would like to be able to obtain bounds which faithfully represent the

scaling behavior of the performance measures of interest in the heavy traffic regime as the (bottleneck)

traffic intensity ρ converges to the unity. Further, it would be interesting to obtain performance bounds

on the tail probability of the performance measure of interest, perhaps by constructing constraints

implied by bounds on the tail probabilities of the underlying stochastic processes. For example, perhaps
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one can obtain large deviations type bounds by considering the linear constraints implied by the large

deviations bounds on the underlying stochastic processes. Deeper connection between the results of this

paper and the results in the adversarial queueing theory and the related queueing literature is worth

investigating as well.

Finally, we expect that the philosophy of replacing the probability model with implications of the

probability model will prove useful in non-queueing contexts as well, whenever one has to deal with the

issues of stochastic analysis of complicated functionals of stochastic primitives.
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Appendix. Preliminary technical results

In this section we establish some preliminary technical results. Using φ as defined by (8), we let

U(x) = −ax+ 2bφ(x) + c for some positive constants a, b, c satisfying

b

a
≥ e2e. (34)

Lemma 5. U(x) is strictly concave for x ≥ ee.

Proof.

∂U(x)

∂x
= −a+ b

√
ln lnx

x
+

b

lnx

1√
x ln lnx

∂2U(x)

∂x2
= b

(
x−

1
2

1

2
(ln lnx)−

1
2

1

lnx

1

x
+ (ln lnx)

1
2 (−1

2
x−

3
2 )
)

+b
(
− (lnx)−2 1

x
(x ln lnx)−

1
2 + (lnx)−1(−1

2
)(x ln lnx)−

3
2 (

1

lnx
+ ln lnx)

)
= bx−

3
2 (

1

2
)(ln lnx)−

1
2

( 1

lnx
− (ln lnx)

)
+b
(
− (lnx)−2 1

x
(x ln lnx)−

1
2

)
+ b
(

(lnx)−1(−1

2
)(x ln lnx)−

3
2 (

1

lnx
+ ln lnx)

)
< 0 since all three terms on RHS above are negative for x ≥ ee
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Lemma 6. Assuming (34) and ee > (c/b)2,

U(x) < 0 ∀ x > (18b2/a2) ln ln(3b/a).

Proof. Since (18b2/a2) ln ln(3b/a) > ee, throughout the proof we restrict ourselves to the domain x ≥ ee.

Since in addition x > (c/b)2, we have bφ(x) ≥ b
√
x > c. In this range −ax+2bφ(x)+c ≤ −ax+3bφ(x) =

−ax+ 3b
√
x ln lnx. This quantity is less than zero provided

( x

ln lnx

) 1
2
>

3b

a
, α.

It is easy to check that x/ ln lnx is a strictly increasing function with limx→∞(x/ ln lnx) = ∞. Let x0

be the unique solution of x/ ln lnx = α2 on x ≥ ee. We claim that x0 ≤ 2α2 ln lnα. The assertion of

the lemma follows from this bound. Let A = 2α2 ln lnα. Then

A

ln lnA
=

2α2 ln lnα

ln(2 lnα+ ln(3) α+ ln 2)

≥ 2α2 ln lnα

ln(4 lnα)
since lnα ≥ ln(3) α and lnα > ln 2

≥ 2α2 ln lnα

2 ln(lnα)
since lnα > ln(b/a) ≥ 2e > 4.

= α2.

This implies x0 ≤ A and the proof is complete.

Proposition 2. Under the assumption (34)

sup
x≥0

U(x) ≤ 7(b2/a) ln ln(b/a) + c.

Proof. Since a > 0, then the supremum in supx≥0 U(x) is achieved. Let x∗ be any value achieving

maxx≥0 U(x). First suppose 0 ≤ x∗ < ee. It follows from the definition of φ in (8) that φ(x∗) = 1 and

thus U(x∗) = −ax∗+ 2b+ c. Using 0 ≤ x∗ < ee and assumption (34), it is straightforward to check that

U(x∗) is indeed upper bounded from above by 7(b2/a) ln ln(b/a)+c. Next, we consider the case x∗ = ee,
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and using the fact that a > 0, we obtain U(x∗) ≤ 2b ·
√
ee ln ln(ee) + c. It is again straightforward to

check that the aforementioned bound is upper bounded from above by 7(b2/a) ln ln(b/a) + c.

We now consider the case x∗ > ee. By Lemma 5, x∗ is the unique point satisfying ∂U(x∗)
∂x∗ = 0, if it

exists. The remainder of the proof is devoted to the final case where we obtain

0 =
∂U(x∗)

∂x∗
= −a+

b( 1
lnx∗ + ln lnx∗)
√
x∗ ln lnx∗

(35)

Continuing further, (35) implies

√
x∗ ln lnx∗

ln lnx∗ + 1
lnx∗

=
b

a
, α. (36)

Note

x∗

ln lnx∗
> α2

x∗

2 ln lnx∗
< α2 since ln lnx∗ >

1

lnx∗
for x ≥ ee

It is easy to check that x/ ln lnx is a strictly increasing function for x ≥ ee and limx→∞(x/ ln lnx) =∞.

(34) implies that there exist unique xmin and xmax satisfying

xmin

ln lnxmin
= α2 xmax

2 ln lnxmax
= α2

The monotonicity of x/ ln lnx implies xmin ≤ x∗ ≤ xmax. In order to complete the proof of the

proposition, we will first state and prove Lemmas 7 and 8.

Lemma 7. xmin ≥ α2 ln lnα and xmax ≤ 4α2 ln lnα.

Proof. Let B1 = α2 ln lnα. Then

B1

ln lnB1
=

α2 ln lnα

ln ln(α2 ln lnα)

<
α2 ln lnα

ln lnα
since ln lnα ≥ 1 for α ≥ e2e

= α2.
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Thus since x
ln lnx is increasing for x ≥ ee, we have xmin ≥ B1 and the first assertion is established.

Let B2 = 4α2 ln lnα. Then

B2

2 ln lnB2
=

4α2 ln lnα

2 ln ln(4α2 ln lnα)

=
4α2 ln lnα

2 ln(2 lnα+ ln(3) α+ ln 4)

≥ 4α2 ln lnα

2 ln(4 lnα)
since lnα ≥ ln(3) α and lnα > ln 4

≥ 4α2 ln lnα

4 ln(lnα)
since lnα ≥ 2e > 4.

= α2.

Thus, again since x/ ln lnx is increasing for x ≥ ee, then the second assertion follows.

Lemma 7 and xmin ≤ x∗ ≤ xmax imply

α2 ln lnα ≤ x∗ ≤ 4α2 ln lnα. (37)

Lemma 8.
√
xmax ln lnxmax ≤ 4α ln lnα.

Proof.

√
xmax ln lnxmax ≤

√(
4α2 ln lnα

)
ln ln

(
4α2 ln lnα

)
by Lemma 7

= α
√

4 ln lnα

√
ln
(
2 lnα+ ln(3) α+ ln 4

)
≤ α

√
4 ln lnα

√
ln
(
4 lnα

)
since lnα ≥ ln(3) α and lnα ≥ ln(e2e) > ln 4

≤ α
√

4 ln lnα
√

2 ln lnα since lnα > 4

and the lemma follows from the last step.
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We now complete the proof of Proposition 2. We have

U(x∗) ≤ −ax∗ + 2b
√
x∗ ln lnx∗ + c

≤ −axmin + 2b
√
xmax ln lnxmax + c since xmin ≤ x∗ ≤ xmax

≤ −axmin + 8bα ln lnα+ c by Lemma 8

≤ −aα2 ln lnα+ 8bα ln lnα+ c by Lemma 7

= 7(b2/a) ln ln(b/a) + c.
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